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Letter to Editor
Acetylcholine (ACh), a classical neurotransmitter of the

central and peripheral nervous systems, triggers signal
transduction events. The availability of ACh in cells and body
fluids relais in the actions of choline acetyltranferase (ChAT), the
enzyme that makes ACh from acetyl-coenzyme A and choline
[1], and the cholinesterases acetyl- (AChE) and butyryl-
cholinesterase (BChE) [2]. Owing to their high ACh-hydrolyzing
capacity, AChE and BChE allow sustain temporal and spatial
control of the great variety of down-stream cellular events that
follows activation of nicotinic (nAChRs) and muscarinic receptors
(mAChRs). Down-regulation of ChAT decreases the level of
available ACh, this ACh deficiency being especially intense in
Alzheimer´s disease (AD) owing to the progressive loss of
cholinergic neurons in the brain areas involved in cognitive
functions [3]. The attempts to overcome this deficiency of ACh
by prescribing ChE inhibitors (ChE-I) have been unsuccessful.
Over 100 million AD patients have been treated with ChE-I since
1986 and, despite clinical stabilization for up to one year in 20%
of them an efficient therapy against cognitive troubles has not
been found yet, which has prompted clinicians to pursuit new
therapeutic approaches [4]. While at the muscular level the
deficiency of AChE is causally related with myasthenic disorders
[5], AChE down-expression and the subsequent risen level of
ACh likely facilitate intense and long lasting cholinergic effects,
which may even favour tumour growth [6-9].

ACh occurs in the blood [10] and many types of non-neuronal
cells, including epithelial, endothelial and immune cells along
with tumour-derived cells, can produce and release ACh [9]. This
non-neuronal ACh likely functions like a local signalling
molecule, which, acting through autocrine and paracrine routes,
may regulate basic cell functions. The amount of ACh which
arises from non-neuronal cells can impair cell cycle regulation
and the same may take place with nicotine and other exogenous
chemicals capable of occupying the site and mimicking the
actions elicited by agonists of nAChRs and mAChRs. An excess of
available ACh, and the concurrent over-activation of AChRs, may
collaborate to malignancy in intestine, lung, liver and kidney

[11]. Inactivation or persistent inhibition of AChE (and BChE) by
nerve agents, pesticides or some other xenobiotic may also
stimulate cell proliferation and tumour growth [12].

While choline transporters, vesicular transporters of ACh and
all classes of nAChRs and mAChRs consist of proteins that span
the membrane several times, the full range of AChE proteins are
devoid of multiple transmembrane regions. This does not mean
that the whole range of AChE variants behave as water-soluble
proteins. We shall see below that several classes of AChE
proteins occur in cells and tissues as amphiphilic (detergent-
interacting, lipid-binding) proteins. Thus, while water-soluble
(hydrophilic) AChE species occur in the blood serum, saliva and
cerebrospinal fluid [13], tissue-specific mixtures of hydrophilic
and amphiphilic AChE species occur in the mouse brain [14],
muscle [15], nerve [16], thymus [17] and other visceral organs
[18].

The 3’-splicing of the AChE pre-mRNA leads to R
(readthrough), H (hydrophobic) and T (tailed) mRNAs, along with
their corresponding proteins. Before processing at the rough
endoplasmic reticulum (RER), AChER, AChEH and AChET proteins
exhibit hydrophilic properties, but addition of
glycosylphosphatidylinositol (GPI) supplies amphiphilicity to
AChEH subunits [19], and linkage of PRiMA (proline-rich
membrane-anchor) does so to tetrameric AChET [20]. The
variety of AChE proteins is expanded by including the E1e exon
in the 5’-end of the mRNA. The E1e-including AChE mRNAs
translates into N-terminally extended N-AChER, N-AChEH and N-
AChET variants [21]. The protection lent by the N-extension
prevents the signal peptide from being cleaved off in the RER. As
a result, the transmembrane signal peptide allows linkage to
membranes of N-AChE proteins, which, later on move and
remain at the cell membrane as ecto-proteins [22].
Summarising, current information indicates that AChE mRNAs
and proteins have changed along evolution to generate an
ample range of monomeric and oligomeric AChE variants made
of N-extended N-AChER, N-AChEH and N-AChET and non-
extended AChER, AChEH and AChET.
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Thus, N-extension, glypiation and PRiMA addition likely
represent evolutionary strategies to solve the difficult task of
immobilizing in the cell membrane a series of catalytically
competent (and/or not competent?) AChE species with
hydrophilic faces exposed outwards. As for the membrane-
bound AChE species, although speculative, it is tempting to think
that physiological reasons may are behind the choice of GPI or
the transmembrane peptide which include PRiMA and the N-
extension: the release of AChE in a catalytically competent state
by the actions of phospholipases and proteases [23]. Thus, while
the release of catalytic AChE may be useful for withdrawing ACh
in interstitial fluids, this loss of AChE may form part of the ways
needed for achieving ACh homeostasis in body fluids, tissues
and cells.

The widely accepted idea of glypiation as a one of the motifs
that favour protein targeting to lipid rafts prompted us to test
the presence in rafts of GPI-linked AChEH. The observation of
glypiated AChE in rafts of mouse muscle and liver [24] lends
weight to our proposal and gives sense to the specific splicing
that leads to AChEH protein. But if glypiation allowed directing
AChE to raft domains, what about PRiMA? The observation of
PRiMA-bound AChE in rafts of brain [25] demonstrated that
PRiMA linkage was another means of targeting AChE to rafts. As
this point, we wondered whether the N-extension was a third
manner of directing AChE to rafts. The observation of distinct N-
AChE proteins in hepatic rafts [24] allowed us substantiate the
proposal. Therefore, N-extension, glypiation and PRiMA addition
are not only strategies used by AChE variants for membrane
linkage, but also the means by which the variants are hosted in
membrane patches that possess high levels of sphingolipid and
cholesterol. The targeting to rafts of AChE variants explains
previous observations regarding the capacity of AChE to interact
with diverse protein partners, including prion protein, aurora B
kinase, glycogen synthase kinase-3, the death receptor FAS, the
membrane integrin receptor and other proteins that temporally
or permanently reside in lipid rafts [26]. The capacity of AChE to
interact with an ample range of proteins, the fact that several
AChE variants localize to rafts, the relevance of cholesterol for
activating M3 mAChR in smooth muscle, and the role of
caveolae in M2/M3 mAChR-evoked airways constriction [27]
place lipid rafts in the cholinergic scenario. In addition, the co-
localization of M3 receptors and AChE variants in hepatic rafts
[24] indicates that in liver cells at least both AChRs and AChE
variants share the same raft domain. This co-existence makes it
possible that the surface membrane of ACh-sensitive cells,
regardless of their neural and non-neural origin, can be
decorated with raft patches holding AChRs, AChE variants and
other proteins of the cholinergic system. Each raft with
embedded ACh-related proteins may represent the molecular
device used by cells to speed-up spatial and temporal control of
cholinergic pulses, but further experiments are needed to
validate this possibility.
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